Copper stabilizes a heterodimer of the yCCS metallochaperone and its target superoxide dismutase.
نویسندگان
چکیده
The copper chaperone for superoxide dismutase (CCS) activates the antioxidant enzyme Cu,Zn-SOD (SOD1) by directly inserting the copper cofactor into the apo form of SOD1. Neither the mechanism of protein-protein recognition nor of metal transfer is clear. The metal transfer step has been proposed to occur within a transient copper donor/acceptor complex that is either a heterodimer or heterotetramer (i.e. a dimer of dimers). To determine the nature of this intermediate, we generated a mutant form of SOD1 by replacing a copper binding residue His-48 with phenylalanine. This protein cannot accept copper from CCS but does form a stable complex with apo- and Cu-CCS, as observed by immunoprecipitation and native gel electrophoresis. Fluorescence anisotropy measurements corroborate the formation of this species and further indicate that copper enhances the stability of the dimer by an order of magnitude. The copper form of the heterodimer was isolated by gel filtration chromatography and contains one copper and one zinc atom per heterodimer. These results support a mechanism for copper transfer in which CCS and SOD1 dock via their highly conserved dimer interfaces in a manner that precisely orients the Cys-rich copper donor sites of CCS and the His-rich acceptor sites of SOD1 to form a copper-bridged intermediate.
منابع مشابه
Copper-Stabilized Heterodimer of the yCCS Metallochaperone and its target Superoxide Dismutase
The copper chaperone for superoxide dismutase (CCS) activates the antioxidant enzyme Cu, Zn SOD (SOD1) by directly inserting the copper cofactor into the apo form of SOD1. Neither the mechanism of protein-protein recognition nor of metal transfer is clear. The metal transfer step has been proposed to occur within a transient copper donor/ acceptor complex that is either a heterodimer or heterot...
متن کاملHeterodimer formation between superoxide dismutase and its copper chaperone.
Copper, zinc superoxide dismutase (SOD1) is activated in vivo by the copper chaperone for superoxide dismutase (CCS). The molecular mechanisms by which CCS recognizes and docks with SOD1 for metal ion insertion are not well understood. Two models for the oligomerization state during copper transfer have been proposed: a heterodimer comprising one monomer of CCS and one monomer of SOD1 and a dim...
متن کاملUndetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase.
The copper chaperone for the superoxide dismutase (CCS) gene is necessary for expression of an active, copper-bound form of superoxide dismutase (SOD1) in vivo in spite of the high affinity of SOD1 for copper (dissociation constant = 6 fM) and the high intracellular concentrations of both SOD1 (10 microM in yeast) and copper (70 microM in yeast). In vitro studies demonstrated that purified Cu(I...
متن کاملCyanobacterial metallochaperone inhibits deleterious side reactions of copper.
Copper metallochaperones supply copper to cupro-proteins through copper-mediated protein-protein-interactions and it has been hypothesized that metallochaperones thereby inhibit copper from causing damage en route. Evidence is presented in support of this latter role for cyanobacterial metallochaperone, Atx1. In cyanobacteria Atx1 contributes towards the supply of copper to plastocyanin inside ...
متن کاملMechanism of Cu,Zn-superoxide dismutase activation by the human metallochaperone hCCS.
The mechanism for copper loading of the antioxidant enzyme copper, zinc superoxide dismutase (SOD1) by its partner metallochaperone protein is not well understood. Here we show the human copper chaperone for Cu,Zn-SOD1 (hCCS) activates either human or yeast enzymes in vitro by direct protein to protein transfer of the copper cofactor. Interestingly, when denatured with organic solvents, the apo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 276 42 شماره
صفحات -
تاریخ انتشار 2001